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1 INTRODUCTION 

In the U.S. electric power has been supplied by vertically integrated monopolistic utilities for a 

long time. A cost-based approach has been used for electrical pricing. To achieve economic efficiency of 

production and operation, inter-utility power interchange is prevalent between the utilities. The utilities 

having more expensive production buy energy from the utilities with less expensive production that 

have excessive capacity through interconnections. Energy brokerage systems are a well-known method 

used for power interchange. Under the traditional brokerage system, power interchange transactions 

are set up by central brokers in each period, e.g., hourly. The central brokers match the bids subject to 

certain rules and announce the accepted transactions. The other prevalent form of power interchange 

can be seen in power pools. Power pools are coordinated groups of utilities in which centralized unit 

commitment (UC) is performed across the entire power pool to have greatest savings. 

Presently the electric power industry in the U.S. is restructuring to be more competitive. The 

cost-based approach to developing electricity rates will be changed to be price-based and auctions are 

considered to be a promising pricing mechanism for the competitive market. Various types of auctions 

have been proposed for use in the electric power market. This thesis focuses on certain types of auctions 

which will be described in this chapter. 

1.1 Contents of this thesis 

The purpose of this thesis is to show how to implement single-sided and double-sided auctions 

using various techniques and to describe the problems associated with using LaGrangian Relaxation 

to implement auctions. An algorithm is also developed for Interior-Point Linear Programming (IPLP) 

such that IPLP can find the exact optimal solution and sensitivity analysis can be performed with 

IPLP. The techniques considered in this thesis are LaGrangian Relaxation (LR), Interior-Point Linear 

Programming (IPLP), and Upper-Bound Linear Programming (UBLP). To implement auctions with 

these three techniques for this thesis, three computer programs are developed. These three computer 

programs are written in MATLAB.The details of the three computer programs will be described in this 
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thesis. 

The thesis is arranged as follows: the remainder of chapter 1 gives an overview of electric power 

market framework and the four types of auctions considered in this thesis. Chapter 2 reviews the pre-

vious work which has been done in areas related to this thesis. Chapter 3 explains the three techniques 

used in implementing auctions in this thesis. For each technique, the basic concepts, the algorithms, 

and the formulations applying to certain types of auctions are described. The problems associated with 

implementing type 1 and 2 auctions using LR are described in the LR section. Chapter 4 shows the 

results of illustrative auction examples tested on a six-bus system. The test cases showing the auction 

implementation problems associated with the use of LR are also included in chapter 4. Chapter 5 

presents conclusions of this thesis. The appendix shows the six-bus system and the system data used 

to yield the results in chapter 4. 

1.2 Framework 

In this thesis, the framework of electric power market is based on Sheble et al. [1]. The framework is 

shown in Figure 1.1. There are three main participants, generation companies (GENCOs), transmission 

companies(TRANSCOs), and distribution companies (DISTCOs). GENCOs sell energy to DISTCOs 

through transmission lines owned by TRANSCOs. The independent contract administrator (ICA) 

matches bids subject to the standards set up by NERC to maintain the systems in an efficient, secure, 

and reliable status. The participants can submit bids to the ICA directly or to energy management 

agents (EMAs) or broker companies (BROCOs). EMAs and BROCOs are power marketers. They 

are very similar to each other except that BROCOs deal more with bilateral contracts. EMAs or 

BROCOs broker transactions between the buyers and sellers that can agree on contracts and send bids 

from the remaining participants to the ICA to participate in the auction. Ancillary service companies 

(ANCILCOs) provide ancillary services for security and reliability of transmission systems. Energy 

Services Companies (ENSERVCOs) provide the services for ensuring high quality and reliable energy 

for customers to buy. ANCILCOs provide services for transmission systems while ENSERVCOs provide 

services for distribution systems. Note that for the test cases included in this thesis, the interactions of 

the TRANS COs are ignored, but could easily be included. 
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Figure 1.1 Electric power market framework 

1.3 Auctions 

This thesis considers two main types of auctions, singled-sided and double-sided auctions. Each type 

of auction is analyzed under two scenarios. Each scenario is based on what GENCOs and IPPs (and 

DISTCOs) submit to ICA, bids or fuel cost curves in case of GENCOs or IPPs, and bids or revenue 

curves in case of DISTCOs. Thus, there are four auction scenarios considered in this thesis. A generic 

diagram of all four scenarios is shown in Figure 1.2. For this thesis, the results and discussion are based 

on the diagram in Figure 1.2. The differences between each type of auction is shown in Table 1.1. 

ISO I ICA I POOLCO 

data B result B 

DISTCOs 

Figure 1.2 Auction diagram 
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Table 1.1 Four types of auctions considered in this thesis 

Type Description data A data B result A result B 
Type 1 Single-Sided, Cost Models Loads/hour Schedules Costs 

Cost-Based 
Type 2 Dou ble-Sided, Cost Models Revenue Models Schedules Costs 

Cost-Based 
Type "3 Single-Sided, Submitted Bids Loads/hour Accepted Bids Costs 

Price-Based 
Type 4 Double-Sided, Submitted Bids Submitted Bids Accepted Bids Accepted Bids 

Price-Based 

In McAfee et aJ. [2], an auction is defined as "a market institution with an explicit set of rules 

determining resource allocation and prices on the basis of bids from the market participants". From 

this definition, type 1 and 2 auctions as described in the thesis can be considered as auctions in the 

sense that the electricity allocation and prices are determined on the basis of bids from IPPs, GENCOs, 

(and DISTCOs). The point of contention is that in the old environment the bids of IPPs and GENCOs 

are mandated to be the true cost functions (plus some rate of return) and the bids of DISTCOs are 

mandated to be the true revenue functions (plus some rate of return). The participants were still 

bidding, but they were restricted to bidding their costs. It is mainly a matter of semantics, and for 

the purposes of discussion and implementation this thesis assumes type 1 and 2 auctions to really be 

auctions. 

Comparing the inter-utility power interchange procedures in the old environment, power pools and 

energy brokerage systems, to type 1, 2,3, and 4 auctions, power pools are equivalent to type 1 auctions. 

Energy brokerage systems are similar to type 3 and 4 auctions except that the prices bid in the energy 

brokerage systems have to be based on the true cost curves plus some rate of return while the prices 

bid in type 3 and 4 auctions can be any value the bidders desire. 

Throughout this thesis, type 1, 2, 3, and 4 auctions will be used to refer to the various cases described 

in Table 1.1. Type 1 and 3 auctions are single-sided auctions and type 2 and 4 auctions are double-sided 

auctions. For type 1 and 3 auctions, DISTCOs do not have a chance to bid. They only submit the 

hourly load and get the energy at the same price as other DISTCOs. For type 2 auctions, DISTCOs 

submit their revenue models. The concept of revenue models will be discussed in Chapter 3. 
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2 LITERATURE REVIEW 

For the new competitive electric power market, auctions have been proposed and are considered to be 

a promising method for pricing. Sheble [3] outlined a method to use auction systems in cash and future 

markets to provide reserve margins for generator and transmission line forced outages. \Vollenberg et 

al. [4] developed a document which discussed interesting technical issues for electric power market in a 

response to the Federal Energy Regulatory Commission's Notice of Proposed Regulation of March 29, 

1995. Post [5] gave a complete explanation of various types of auctions. In this thesis, three methods, 

LR, IPLP, and UBLP, are used to implement auctions. Previous research that has been done in related 

areas is described below. 

2.1 LaGrangian Relaxation (LR) 

Fisher [6] described the basic formulation and discussed interesting issues of applying LR to solve 

integer programming problems. Three methods for updating LaGrange multipliers, the subgradient 

method, column generation techniques of the simplex method, and multiplier adjustment methods, 

were also reviewed in the paper. There are many methods for updating LaGrange multipliers. Among 

these methods, the subgradient method is promising and is widely used. Fisher [7] presented a generic 

algorithm of using LR together with the branch and bound method to solve integer programming 

problems. The general form and numerical example were also shown in the paper. 

LR was applied to implement the UC problem which is a large-scale mixed integer programming 

problem. Sheble et al. [8] presented an overview of the literature in the field ofUC. Merlin et al. [9] intro-

duced an algorithm to completely solve large scale UC problems without incorporating the branch and 

bound method. Bard [10] mentioned that including ramping constraints in UC increased the compu-

tational burden dramatically in constructing good feasible solutions, based on the proposed algorithm. 

Zhuang et al. [11] presented an algorithm comprising three phases. In the first phase, the LaGrangian 

dual of the UC problem was solved by sufficiently many subgradient iterations. In the second phase, 

a systematic procedure was developed to search for suboptimal reserve-feasible dual solutions by in-
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telligently adjusting the LaGrange multipliers. In the third phase, the economic dispatch calculation 

(EDC) was performed with the schedule from the second phase. Aoki et al. [12] implemented optimal 

long-term UC in large scale systems with LR. The long-term UC was implemented because fuel con-

strained thermal and pumped-storage hydro units were included. Demand, reserve, and fuel constraints, 

were relaxed. The variable matrix method was used instead of the subgradient method to achieve bet-

ter convergence in this long-term UC. Virmani et al. [13] observed some implementation aspects of LR 

while applying it to realistic and practical UC problems and also discussed handling identical generation 

units, by committing them as a group or adjusting their heat rates slightly to make them distinct and 

then committing them separately. Lee et al. [14] presented a method for solving reserve constrained 

EDC when some on-line generators had prohibited operating zones, which made the decision space 

non-convex. The method decomposed the prohibited operating zones into a small number of subsets 

such that each of the associated EDC problems was either infeasible or solvable by the conventional LR 

method. When comparing all the feasible costs of the feasible subproblems, the optimal solution is the 

least cost one. Ferreira [15] derived a bound on the duality gap for thermal UC under the assumption 

of no minimum commitment times. Yan et al. [16] scheduled hydrothermal power systems by relaxing 

system-wide demand and reserve constraints and then decomposing the problem into hydro and thermal 

unit subproblems. Comparison were made that this new coordinated hydro and thermal unit scheduling 

generated lower total costs and required less computation time than previous done by Yan et al. where 

thermal units were scheduled by using LR and hydro units by heuristics. Jeloka [17] implemented UC 

using LR. Slawaji et al. [18] proposed an approach to solve UC of thermal units for large scale power 

system. The approach classified the units having identical input-output characteristics into the same 

group and represented each group by one unit. Guan et al. [19] focused on the solution methodology for 

pumped-storage units by relaxing pond level constraints in scheduling. Wang et al. [20] presented the 

application of a mathematical method to generator scheduling, in which ramp rate limits were added in 

constraints of UC and the cost of fatigue effect was included in the objective function of EDC. The UC 

was solved with LR and the EDC was solved with LP. EI-Keib et al. [21] proposed an algorithm to solve 

the environmentally constrained EDC problem. The algorithm can handle a large number of various 

types of linear and nonlinear environmental constraints. Svoboda et al. [22] showed how to incorporate 

the endogenously priced resources into short-term scheduling. This was different from the prevailing 

method in which the endogenously priced resources were activated through post-dispatch price signals 

derived from the scheduling. The simulation study showed that integrated scheduling could produce 

significant improvements in operations and costs. Wang et al. [23] included ramping costs in the objec-



www.manaraa.com

7 

tive function of optimal generation scheduling. Baldick [24] formulated and proposed an algorithm for 

generalized UC. This generalized UC was able to handle many types of constraints. Guan et al. [25] 

approximated linear cost functions of subproblems in hydrothermal scheduling problems as non-linear 

functions so that the solution of subproblems did not oscillate. Peterson et al. [26] extended the LR 

algorithm to account for crew constraints in UC. Prasannan et al. [27] included the seller's revenue 

in the objective function of UC to integrate decision in offering transactions with system scheduling. 

The seller's nonlinear revenues were used to approximate their linear revenue functions to solve the 

problem efficiently. Lin et al. [28] included purchase cost in the objective function to integrate decisions 

on offering purchase transactions with system scheduling. Gjengedal [29] incorporated emission con-

straints in the UC to achieve daily or weekly emission targets. Bos et al. [30] developed an algorithm 

for combining electricity and heat UC. Heat storage devices were incorporated in the UC and the sub-

problems of the heat storage devices were converted into LP problems. Ruzic et al. [31, 32] presented a 

new flexible approach for short-term hydro-thermal coordination in UC problems. The paper presented 

two case-studies having completely different thermal hydro systems to show flexibility of the proposed 

approach. 

The above references ([9] to [32]) developed algorithms and LaGrange multiplier updating procedures 

to be appropriate with different objective functions and constraints. The basic formulations, algorithms, 

and LaGrange multiplier updating procedures can also be seen in Sheble [33] and Wood et al. [34]. 

2.2 Interior-Point Linear Programming (IPLP) 

Arbel [35] gave explanations, formulations, and algorithms of the primal, dual, and primal-dual 

affine-scaling interior-point linear programming method. Hertog [36] explained the logarithmic barrier 

method, the center method. Interior-Point Programming (IP) method was applied to power system 

problems. Some power system problems were solved by interior point linear programming [37] while 

some were solved by interior point quadratic programming [38, 39, 40, 41, 42, 43]. Wu et al. [38], 

Momoh et al. [41], and Torres et al. [43] used IP to solve OPF problems. Yan et al. [37] applied IP to 

solve security-constrained EDC problem. Granville [39] handled optimal reactive dispatch problem by 

IPP. Wei et al. [42] utilized IP to solve OPF and EDC problems. Momoh et al. [40] implemented EDC 

and optimal VAR dispatch by IP. 

IPLP is not able to find an exact optimal solution, but rather finds a solution that is very close to 

the optimal solution. Another drawback is that sensitivity analysis cannot be done with IPLP. Marsten 

et al. [44] used a special simplex algorithm using the concept of super-basic variables to recover the 
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optimal basis after terminating from applying dual affine interior point algorithm to solve optimization 

problems. The drawback of the basic recovery method described in [44] was that it was computationally 

expensive. In experiments Marsten et al. [44] pointed out that recovery of an optimal basis could require 

more execution time than was required to solve the problem by dual affine method. 

2.3 Linear Programming: Simplex method 

This subsection summarizes the previous research that solves related power system problems using 

the simplex LP method. This summary covers the generalized simplex method and is not limited only 

to UBLP. Bazaraa et al. [45], Hillier et al. [46], and Luenberger [47] explained the basic concepts, 

applications, and implementation issues. Fahd et al. [48] implemented an energy brokerage system 

using LP. Fahd et al. [49] presented an interchange brokerage system based on OPF solution by using 

LP. Smith [50] developed a model for real-time pricing of electric power using LP. Roy [51] used goal-

programming to determine optimal pricing for inter-area energy exchange. Post et al. [52] used LP to 

implement one-sided auctions, bidding by buyers, with sellers' reservation prices, without simultane-

ous consideration of network constraints. Chattopadhyay [53] presented a LP formulation for energy 

brokerage system with emission trading and allocation of cost savings. Kumar et al. [54] proposed a 

framework for an energy brokerage system with reserve margin and transmission losses using LP. The 

network constraints were simultaneously considered in solving auctions. Kumar [55] developed a frame-

work for market-based pricing of ancillary services in electric power transactions. Kumar used LP to 

yield the illustrative examples contained in [55]. 

The above references ([48] to [55]) used LP to implement auction, brokerage, and pricing problems. 

Apart from these problems, the following related problems were also solved by LP. LP was used to solve 

OPF problems [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66], rescheduling problems [67, 68], and reactive 

power control problems [69, 70, 71, 72, 73]. Bosch [74] used LP to implement EDC. Zhang et al. [75] and 

Huang et al. [76] applied LP to solve security constrained EDC problems. EI-Keib et al. [77] handled 

environmentally constrained EDC using LP. 
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3 THREE METHODS FOR IMPLEMENTING AUCTIONS 

Before explaining each of the three methods used to implement auctions in this thesis, the common 

notations are described here. The bold type letter indicates a vector or a matrix. The normal letter 

indicates scalar. MT signifies the transpose of matrix M. M- 1 signifies the inverse of matrix M. Mij is 

the element of matrix M at the ith row and jth column. 1m is a m x m identity matrix. The Euclidean 

norm of vector v is represented by norm(v). Vi is the ith component of vector v. The magnitude of 

vector v is denoted by Ivl. lal is the absolute of scalar a. 

3.1 LaGrangian Relaxation (LR) 

LaGrangian Relaxation (LR) is an optimization technique which decomposes the main complex 

mathematical programming into simple subproblems that are additively separable by relaxing the hard 

constraints, e.g. coupled constraints. Each subproblem is coupled through common LaGrange mul-

tipliers. Each subproblem is solved separately, and the complete problem is solved by updating the 

LaGrange multipliers at each iteration until a near-optimal solution is found. LR has been successfully 

applied to various problems. For electric power, LR has been applied to the unit commitment (UC) 

problem. The LR algorithm is successful since a LaGrange multiplier updating procedure has been suit-

ably developed to converge efficiently. Many methods have been developed for updating the LaGrange 

multipliers. Among these methods, the subgradient method is promising and is widely used in DC. For 

the purpose of this thesis, the subgradient method is considered good enough for updating LaGrange 

multipliers. 

LR has many advantages over other methods. For example, in DC, the computational requirement 

of using LR varies linearly with number of generation units, N and stages, T while the computational 

requirement of dynamic programming (DP) varies exponentially with Nand T, (2N - l)T. It is also 

easy to handle additional constraints in LR if they are additively separable to the problem. Another 

set of LaGrange multipliers is required for relaxing a set of additional constraints. However, LR has 

some weaknesses when it comes to convergence. The solution found by LR might not be feasible nor 
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near-optimal if LaGrange multipliers have not been updated properly. 

LR is used to implement type 1, 2, 3, and 4 auctions in this thesis. The formulations, algorithms, 

and LaGrange multiplier updating procedures of LR for application to different types of auctions are 

shown below. The implementation problems associated with implementing type 1 and 2 auctions using 

LR are described at the last part of this section. 

3.1.1 Applying LR to type 1 auctions 

In type 1 auctions, all GENCOs and IPPs submit their generating cost models to the ICA, and 

DISTCOs submit their hourly loads to the ICA. Then the ICA performs the auction by UC analysis 

using LR for the system in the specified period, 24 or 168 hours. In other words, the ICA performs 

auctions with the LR based UC procedure because the formulation of the LR-based type 1 auction is 

the same as that of the LR-based UC. After the ICA finds the optimal solution, the optimal schedule 

is given to each GENCO and IPP, and the optimal cost is given to each DISTCO. 

This thesis uses the formulation, algorithm, and LaGrange multiplier updating procedure of LR-

based auctions which are modified from those used for LR-based UC as described in Merlin et al. [9]. 

For simplicity, the following assumptions are being made. The spinning reserve constraints have been 

neglected. The fuel cost is assumed to be a quadratic function. The start-up cost is assumed to be 

constant for all units which also represents the transition cost because the shut-down cost is assumed 

to be zero. These assumptions of the spinning reserve constraints, the fuel cost, and the start-up cost 

will be used throughout this thesis. 

Before explaining the formulation, notations of the common symbols used in this subsection are 

described below. These common symbols will also be used in subsection 3.1.2. 

T 

stup~ 

pm in 
.g 

number of total stages 

start-up cost of unit i from stage t - 1 to t ($/h) 

number of GENCOs 

number of DISTCOs 

power sold by GENCO i at stage t (MW) 

power bought by DISTCO i at stage t (MW) 

minimum capacity of GENCO i (MW) 

maximum capacity of GENCO i (MW) 

minimum load capacity of DISTCO i (MW) 

maximum load capacity of DISTCO i (MW) 
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At 

A 
t Uig' u~d 

pobj 

dobj 
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fuel cost for GENCO i, assumed quadratic function ($/h) 

Fi(Pfg) = aigPfg 2 + bigPfg + Cig 

aig, big, and Cig are non-negative coefficients. 

revenue for DISTCO i, assumed quadratic function (S/h) 

aid, bid, and Cid are non-negative coefficients. 

demand at time t (MW) 

LaGrange multiplier at time t ($/MWh) 

vector containing At from t = 1 to t = T ($/MWh) 

index showing status of GENCO and DISTCO i at 

stage t: l=on(selected), and O=off(not selected) 

value of primal objective function (S) 

value of dual objective function ($) 

3.1.1.1 Formulation 

For ease of notation, the start-up cost of unit i from stage t - 1 to t is simply shown by stup~. The 

stup~ will exist only when u~;l = 0 and uig = 1. Formulation of the auction is shown below: 

Primal problem 

(3.1 ) 

where 
T Ng 

pobj(u~g, Pfg) = L L[Fi(Pfg)u~g + stupn (3.2) 
t=l i=l 

subject to 

power balance constraints 
Ng 

L Pfgu~g = loadt t=1,2, ... ,T (3.3) 
i=l 

unit capacity constraints 

P ·min < pt < p!'lax i 1 2 N t 1 2 T Ig - Ig - Ig =, , ... , 9 =" ... , (3.4) 

minimum up and down time constraints (3.5) 

unit status constraints 

i= 1,2, ... ,Ng t = 1,2, ... ,T (3.6) 
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Derivation from primal to dual problems 

For the primal problem, the power balance constraints, (3.3), may be relaxed and the LaGrange 

function can be written as: 

T N. T N. 

LL)F;(Pfg)u:g +stup:] + LAt(laadt - LP;tgu:g) 
t=l ;=1 t=l ;=1 
T T N. 

L AtLaadt + L L[F;(Pfg)u!g + stup: - At pfgu!g] 
t=l t=l ;=1 
T Ng T 

L AtLaadt + L L[F;(Pfg)u:g + stup: - At pfgu!g] 
t=l ;=1 t=l 

The dual objective function wants to 

T 

max[ min L(u~g, Pfg, At)] 
A' ,,' P' *g' Ig 

From (3.9), for each set of At, L AtLaadt is a constant term ;thus, 
t=l 

T No T 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

L AtLaadt + "filip, (L L[F;(Pfg)u!g + stup: - >/ pfgu!g]) (3.11) 
t=l .g' .g ;=1 t=l 
T Ng T 
"" AtLoadt +"" min (""[F;(Pfg)u~g + stup~ - At Pfgu~g]) (3.12) ~ ~"'Pt ~ t=l ;=1 'g' •• t=l 

From this manipulation, the dual problem can be shown as follows: 

Dual problem 

(3.13) 

where 
T 

dobj(At) = L AtLoadt + d(At) (3.14) 
t=l 

and 

(3.15) 
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where (3.15) is minimized, subject to (3.4), (3.5), and (3.6). Once (3.15) is achieved, the complex 

minimization problem can be simply solved by minimization for each unit separately, which can be 

solved by two state DP. The minimization for each GENCO is done through (3.16) subject to (3.4), 

(3.5), and (3.6) and can be shown below: 

(3.16) 

3.1.1.2 Algorithm and computer program 

The algorithm used for LR in this thesis is shown in Fig. 3.1. There are two criteria for terminating 

the algorithm. First the algorithm will terminate when duality gap is less than or equal to 0.026 (( = 
0.026). Second the algorithm will terminate when number of iterations exceeds 100 (itermax = 100). 

The reason that a rather large number, 100 is used for the small studied system is that the cases studied 

in subsection 3.1.5 are those in which LR has difficulties in converging to the optimal solution. 

A general computer program for LR-based type 1 auctions is developed based on the algorithm in 

Fig 3.1. The program is written in MATLAB. The program is flexible so that it can be modified for 

use with LR-based type 2 auctions. 

3.1.1.3 Updating procedures 

The subgradient technique is used for updating LaGrange multipliers. Each At is updated according 

to (3.17). 

df At = max[At + p Z ,0] 
(a + (3 * iter) * norm(pdif) (3.17) 

a and (3 are constants and pdiP can be defined at (3.18), 

Ng 

pdiP = loadt - L P/g (3.18) 
;=1 

and so pdif is a vector containing pdiP from t = 1 to T. norm(pdif) is the Euclidean norm of vector 

pdif. P/g here is calculated from DP, not from EDC. 

The values of a and (3 can be divided into two categories according to the sign of pdiP as follows: 

Category 1: pdift > 0: a=0.02, (3=0.05. 
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1. Initialization: use staning ')..'. 

15. Update ).:. 

6. Do economic 
dispatch (EDC) and 

calculate pobj . 

N 

7. Do EDC and calculate 
pobj for every combination and 
select ones with minimum pobj. 

y 

y 

Figure 3.1 Algorithm for LR-based type 1 auctions 

Category 2: pdift ::; 0: 0'=0.5, .8=0.25. 

a and .8 when pdiJl ::; 0 are rather large, and larger than those when pdift > 0, to make LR 

converge suitably for the cases studied in subsection 3.1.5. 

3.1.2 Applying LR to type 2 auctions 

In type 2 auctions, instead of submitting the hourly loads, DISTCOs submit revenue models to the 

ICA. The ICA implements the auctions so that the difference between the total revenue of DISTCOs 

and the total production cost of GENCOs is maximized. This subsection will describe the concept of 
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revenue models first, followed by formulation, algorithm, and updating procedure of LR. 

3.1.2.1 Concept of DISTCOs' revenue models 

The revenue model of a DISTCO will be explained by the revenue curve. The revenue curve of a 

DISTCO is the curve describing the DISTCO's revenue and the amount of power sold by the DISTCO 

or load. The model of the revenue curve in this thesis is quadratic and concave which has downward 

sloping linear rate of revenue. The model has two basic characteristics. First, the revenue increases 

with increasing amount of power sold. Second, the rate of revenue with reference to the amount of 

power sold, the decremental revenue, decreases with increasing amount of power sold. In other words, 

the price of power is less expensive when customers buy greater amounts of power. General forms of 

mathematical functions of revenue and decremental revenue are shown in (3.19) and (3.20) respectively. 

The revenue function of a DISTCO changes with time because it depends on the demand and supply 

of the market. Fig. 3.2 and 3.3 show the curves of revenue and decremental revenue of a DISTCO 

having Ri(P/d) = -0.0015 * P/d 
2 + 12.05P/d + 450. The revenue curve in Fig. 3.2 is actually quadratic 

and concave. It looks like straight line because the values of the revenue axis are much greater than 

the those of the load axis. 

( t) t 2 t Ri Pid = -aidPid + bidPid + Cid; aid, bid, Cid ~ 0 (3.19) 

dRi(P/d) t 
dPl

d 
= -2aidPid + bid (3.20) 

The graphical method is a method for doing conventional EDC. The procedure of the graphical 

method is to find the aggregate incremental cost curve of all committed generating units and then the 

optimal incremental cost can be found from this aggregate curve at the level of total required capacity, 

i.e., total load. From this optimal incremental cost, the generating power of each committed unit can 

be found. This concept can be adapted for use with the EDC of LR-based type 2 auctions, at steps 

6 and 7 of the algorithm shown in Fig. 3.1 by reversing the power of DISTCOs to be negative when 

finding the aggregate incremental curve. The optimal incremental price can be found at the level of zero 

total power according to (3.23), that will be described in subsection 3.1.2.2. This concept is used in 

the algorithm that will be described in subsection 3.1.2.3. Actually this concept can also be interpreted 

as the optimal price which can be found from the intersection of aggregate GENCOs' incremental cost 

curve and aggregate DISTCOs' decremental revenue curve. An example is shown in Fig. 3.4, in which 
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4000 

3500 

~30oo 

'" :J 
S 2500 
6; 
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1500 
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Load (P:d ) 
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Figure 3.2 Revenue curve of a DISTCO 

350 

11.9 ~----~r--------.------~------,---------,-----------, 

11.8 

11.7 

'" 11.6 
:J c 
~ r!f 11.5 
~ c 
~ 11.4 
~ u 
Q) 

011.3 

11.2 

11.1 

11L-----~~----~------~-------L-------L--__ ~ 
50 100 150 200 250 300 350 

Load (Pl.) 

Figure 3.3 Decremental revenue of a DISTCO 

the intersection of the aggregate incremental cost curve of GENCOs 1 and 2 and the aggregate decre-

mental revenue curve of DISTCOs 1 and 2 are shown. The intersection shows that the optimal price is 

9.6 and the optimal total power or load is 520 MW. The data of GENCOs 1,2 and DISTCOs 1, 2 are 

shown in Table 3.1. These data come from the data of GENCOS and DISTCOs in stage 2 of section 

4.1.2. 



www.manaraa.com

17 

Table 3.1 Data of GENCOs and DISTCOs for illustrating the intersection of 
aggregate incremental cost and aggregate decremental revenue 

Unit(i) 
GENCO 1 
GENCO 2 
DISTCO 1 
DISTCO 2 

12 

Q) 

~ 11 
~ 
Q) 

II: 
m 
~ 10 

~9.6 
o 
Q) 

c 9 
~ u 
m 
~ 8 
E 
l!! o 
.!i: 

7 

aig, aid 
0.0025 
0.0050 
-0.0015 
-0.0035 

big, bid Cig,Cid p.min L,!,in 
iIl_ ' I 

Pir;;ar, L'('ar 
8.00 300 100 400 
6.00 100 50 200 
12.05 450 50 350 
10.79 300 50 200 

GENCO 1.2 

DISTCO 1.2 

6~--~--~----~---L--~ ____ ~ __ ~ ______ L-____ ~ 

100 150 200 250 300 350 400 450 520 600 
Power. Load 

Figure 3.4 Intersection of aggregate incremental cost and aggregate decremen-
tal revenue 

3.1.2.2 Formulation 

The formulation below is developed for LR based type 2 auctions. DISTCOs do not have start-up 

costs. 

Primal problem 

(3.21) 

where 
T N g T Nd 

pobj = L L Fi(P/g)U~g + stup~ - L L Ri(P/d)U~d (3.22) 
t=1 i=1 t=1 i=1 

subject to 
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power balance constraints 

N g Nd 

L Plgu~g - L: pldU~d = 0 t = 1,2, ... , T (3.23) 
i=1 i=1 

unit capacity constraints 

P !"in < p.t < p.max i-I 2 N t - 1 2 T Ig _ Ig - Ig -, , ... , g -" ... , (3.24) 

L'!Iin < p.t < L'!Iax i = 1,2, ... , Nd t = 1,2, ... , T I _ Id _ I (3.25) 

minimum up and down time constraints (for only Pfg) (3.26) 

unit status constraints 

i = 1,2, ... , Ng t = 1,2, ... , T (3.27) 

i = 1,2, ... , Nd t = 1,2, ... , T (3.28) 

For the primal problem the power balance constraints (3.23) may be relaxed and the LaGrange 

T N g T Nd T Nd N g 

L = L L F;(Plg)u~g + stup~ - L: L: R;(P/d)U~d + L: .At(L: P/dU~d - L: plgu~g) (3.29) 
t=1 ;=1 t=1 ;=1 t=1 i=1 ;=1 

By rearranging, (3.29) can be written as: 

~ T ~ T 
L = L[L(F;(P/g)U~g + stup~ _.At P/g)] + L:[L:( -R;(P/d)U~d +.At pld)] (3.30) 

;=1 t=1 ;=1 t=1 

From the derivation of the LaGrange function, the dual problem can be shown below. 

Dual problem 

(3.31 ) 

where 

N. T 

~ Ur~g [(;(F;(Plg)u~g + stup~ - .At Plg)) (3.32) 

Nd T 

+ L JUin, [L(-R;(Pld)U!d +.At P/d)] 
;=1 U,d,P,d t=1 

The objective function (3.32) is in the separable form where the complex minimization problem 

can be simply solved by minimizing for each unit separately. The minimization for each GENCO is 
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accomplished by (3.33) subject to (3.24), (3.26), and (3.27). The minimization for each DISTCO is 

accomplished by (3.34) subject to (3.25) and (3.28). (3.33) and (3.34) can be solved by two state DP 

and they are shown below. 

(3.33) 

(3.34) 

3.1.2.3 Algorithm and computer program 

The algorithm and the computer program used for LR-based type 2 auctions are modified slightly 

from those of LR-based type 1 auctions. Comparing the formulations of LR-based type 1 and 2 auctions, 

we see that they are very similar to each other except for three main differences. First, LR-based type 2 

auctions maximize the difference between the total revenue of DISTCOs and the total production cost 

of GENCOs, which can be interpreted as minimizing the negative of the total revenue of DISTCOs and 

minimizing the total production cost of GENCOs. By multiplying the revenue of each DISTCO by -1, 

the objective function of type 2 auctions is a minimization function which can be implemented in the 

algorithm and the computer program of LR-based type 1 auctions. Second, a comparison of (3.23) with 

(3.3), reveals that (3.23) can be interpreted as summing all the Plg and all the negative of Pld , -Pld , and 

equating loadt to zero vector. The EDC in steps 6 and 7 of the algorithm also must be implemented in 

this way. Third, comparing the separable minimization for each GENCO of LR-based type 1 auctions, 

(3.16), with (3.33) the separable minimization for each GENCO of LR based type 2 auctions is the 

same. For DISTCOs in LR-based type 2 auctions, from (3.34), the separable minimization is very 

similar except for a sign reversal of the two terms of the separable objective function. Therefore, the 

algorithm and the computer program of LR-based type 1 auctions can be used with LR-based type 2 

auctions as in the following procedure; reverse the sign of the revenue function of each DISTCO, reverse 

the signs of all Pidl for (3.23), input loadl as zero vector, and change from -AI Pidl to be "V Pid l for 

individual unit's minimization. 

3.1.2.4 Updating procedure 

The updating procedure of LR-based type 2 auctions is the same as that of LR-based type 1 auctions 

presented in subsection 3.1.1.3 except that the equation describing pdijl in (3.18) must be changed to 
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(3.35) and the values of Q and f3 used for both cases, when pdijl > 0 and when pdijl ::; 0, are changed 

to 0.5 and 0.25 respectively. 

Nd No 

pdift = L p/d - L P/g (3.35) 
i=1 i=1 

3.1.3 Applying LR to type 4 auctions 

In type 4 auctions, GENCOs, IPPs, and DISTCOs submit their bids to the ICA. The ICA performs 

auctions by maximizing the surplus. The surplus is defined as the difference between the total revenue 

of DISTCOs and the total revenue of GENCOs and IPPs. 

3.1.3.1 General type 4 auction formulation 

The general formulation for type 4 auctions is based on the auction model for pricing reserve margins 

and transmission losses developed in Kumar's dissertation [55]. For type 3 auctions, the formulation 

is modified from that used for type 4 auctions. This is why the application of LR to type 4 auctions 

is described first in this subsection and then followed by the application of LR to type 3 auctions in 

subsection 3.1.4. 

The common symbols for the general formulations of type 3 and 4 auctions will be described below. 

These symbols are common for all techniques applying to type 3 and 4 auctions. 

To use (3.37), components of ~p and ~J must be very small; thus, all the quantities in the 

formulation are in per unit (pu), except that Ji and ~J are in radian and Cbj and C8 i are in $/unit, e.g. 

$/MWh. 

n 

m 

B' 

price of jth buyer's bid 

price of ith seller's bid 

accepted amount of power of jth buyer 

accepted amount of power of ith seller 

number of buyers 

number of sellers 

change in bus voltage angles, in the same order as ~P; (m + n) component column vector 

matrix containing the negative of susceptance of the Y matrix; (m + n) x (m + n) matrix 

changes in losses of the transmission line connecting buses of the ith seller and jth buyer 

magnitude of voltage at bus i 

angle at bus i 
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magnitude of the ith row and jth column component of the Y matrix 

angle of the ith row and jth column component of the Y matrix 

amount of power submitted by ith seller 

amount of power submitted by jth buyer 

loss coefficient; (m + n) component column vector 

K reduced coefficient from reducing active power flow and active power balance constraints 

to one constraint, (m + n) component column vector 

The spinning and ready reserves are not considered in this thesis. The constraints considered here 

are active power flow equations, active power balance constraint, and those constraints which specify 

the bids submitted by GENCOs and DISTCOs. The active power flow equations are used to eliminate 

the a8i terms in the active power balance constraint and therefore the variables of the formulation 

are only APbj and AP.i. The reason that the auction problem is simplified in this manner is that the 

purpose of this thesis is to show how to implement auctions with various techniques, not to develop the 

complete formulation for auctions. The general form of the formulation for type 4 auctions is shown as 

follows: 

(3.36) 

subject to active power flow equations (3.37), active power balance constraint (3.39), and bid amount 

constraints (3.42, 3.43). 

All the constraints can be described as below: 

active power flow equations 

AP - B'A8= 0 (3.37) 

where 

(3.38) 

Note that the fast decoupled power flow is used in this thesis so that the B' is a constant matrix. 

active power balance constraint 

m n m n 

L AP.i - L APbj - L L APLij = 0 (3.39) 
i=l j=1 i=1 j=l 



www.manaraa.com

22 

where 

(3.40) 

(3.41 ) 

In this thesis, the magnitudes and angles of bus voltages in (3.41) are approximated by the original 

values prior to the auction. 

The bid amount constraints combine the bids of sellers or buyers with the non-negativity constraints 

together, and are shown as follows: 

0::; D.P.i::; B.i, i = 1, ... , m (3.42) 

(3.43) 

There are m + n + 1 constraints for (3.37) and (3.39). These m + n + 1 constraints can be manipulated 

to reduce to one constraint as follows: 

(3.37) can be rewritten as 

m n L L D.PLij is the summation of D.PLij of all connections and can be written as 
i=l j=l 

m n 

L L D.PLij = lsc~o 
i=l j=l 

where 

and each component is found by summing the corresponding terms of Lpij and -Lpij in (3.40). 

(3.44) 

(3.45) 

(3.46) 

Using (3.45) and (3.44) with some manipulation, the left-hand side of (3.39) in vector form can be 

rewritten as 

(3.47) 

where 

U = [1 1 ... 1] (3.48) 

To eliminate the negative signs of the last n components of ~P, ~p is pre-multiplied by c. 

~P'=C~P (3.49) 
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where 

(3.50) 

Using (3.49), (3.47) can be finally written as: 

K.~p' = 0 (3.51) 

where 

K = (U -lscB,-1)C (3.52) 

Thus, the general form of type 4 auction formulation in reduced form can be written as: 

(3.53) 

subject to 
m n 

L Ki I::!.P.i + L K m+j I::!.Pbj = 0 
i=1 j=1 

O:S I::!.P.i:S B.i , i = 1, ... ,m 

The upper-bounds and lower-bounds of I::!.p. i and I::!.Pbj can be shown separately and the formulation 

for type 4 auctions becomes: 

(3.54) 

subject to 
m n 

LKiI::!.P.i + LKm+jl::!.Pbj = 0 
i=1 j=1 

I::!.P.i :S B. i , i = 1, ... , m 



www.manaraa.com

24 

To implement in LR, the maximization problem is changed to minimization problem as follows: 

subject to 

m n 

LK;~P$; + LKm+j~Pbj = 0 
;=1 j=1 

~p$; :s B.i, i = 1, ... , m 

~P.i, 2: 0, Vi, 

3.1.3.2 Formulation of LR-based type 4 auctions 

(3.55 ) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

By relaxing the coupling constraint, (3.56), the LaGrange function, L, is shown III (3.61) with 

LaGrange multiplier, A: 

m n m n 

L = L C.i~P.i - L Cbj~Pbj + A( - L Ki~P$i - L Km+j~Pbj) (3.61) 
i=1 j=1 i=1 j=1 

The local constraints, (3.57) to (3.60), can also be relaxed by adding them with additional LaGrange 

multipliers, fl.i, V.i, flbj, and Vbj and the LaGrange function becomes: 

m n m n 

L LC'i~P.i- LCbj~Pbj+A(- LKi~P'i- LKm+j~Pbj) 
i=1 j=1 i=1 j=1 

m n 

+ Lfl.;(~P'i - B.i) + Lflbj(~Pbj - Bbj) 
i=1 j=1 
m n 

- L V.i~P.; - L Vbj~Pbj (3.62) 
i=1 j=1 

The derivative of L with respect to ~P.i and ~Pbj can be derived and is shown in (3.63), and (3.64). 

oL 
O~P.i = c.; - KiA + fl.; - V.i (3.63) 

(3.64) 

At optimality, &g~.; and &g~bj are equal to zero. Thus, (3.63) becomes (3.65) and (3.64) becomes 

(3.66). 
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A = C.i + J1..i _ V.i 
Ki Ki Ki 

(3.65) 

(3.66) 

(3.65) and (3.66) will be used for step two of the algorithm described in subsection 3.1.3.3. Note that 

there are many LaGrange multipliers in (3.62), but only the coupling constraint LaGrange multiplier, 

A, will be used in the iterations of the algorithm described in subsection 3.1.3.3. Note that Km+i is 

negative and therefore -Km+j is positive. 

3.1.3.3 Algorithm 

Because the formulation for type 4 auctions is not very complex, the procedure of using LR to 

implement the auctions is reduced to a simple algorithm as shown in Fig. 3.5, rather than continuously 

switching between solving the primal and dual problems. Steps one and eight of the algorithm will be 

explained in subsection 3.1.3.4. Note that the maximum number of iterations, itermar , is set to 20. 

In step two of the algorithm, l:!..P.i and l:!..Pbj are determined by considering the curves in Fig. 3.6 and 

Fig. 3.7. Based on (3.65) and (3.66), the curves of ..\ versus l:!..P.i and l:!..Pbj can be plotted in Fig. 3.6 

and Fig. 3.7. Fig. 3.6 illustrates the value of 1e- when ..\ is equal to Al in which V.i is equal to zero. 

Fig. 3.7 illustrates the value of _~~+j when ..\ is equal to A2 in which Vbj is equal to zero. 

I. Initialization: 

2. Find d P . and 
SI 

d P bj according to A. 

Y 

N Y 

Figure 3.5 Algorithm for LR-based type 4 auctions 
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From Fig. 3.6, the value of IlP.i can be determined to be as follows: 

IlP.i = B.i if ,\ > C.i 
Ki 

IlP.i = 0 if ,\ < ~ 
Ki 

Similarly, from Fig. 3.7, the value of IlPbj can be determined to be as follows: 

if ,\ < Cbj 
-Km+j 

if ,\ > Cbj 
-Km+j 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

Due to the configuration of this problem, (3.55) to (3.60), there will be m + n - 1 variables binding, 

i.e. they are equal to 0, B.i, or Bbj, and therefore the value of the other variable can be determined 

from (3.56). This is true except only at the worse case, for some values of '\, when all m + n variables 

are binding and (3.56) cannot be satisfied. The optimal'\ will be equal to if.' if the non-binding variable 

belongs to the sellers or ~KCb· if the non-binding variable belongs to the buyers. 
- m+J 

Similar to subsection 3.1.2.1, the optimal ,\ can be found from the intersection of the aggregate ,\ 

curve of sellers and the aggregate ,\ curve of buyers. However, for this problem, the aggregate ,\ curve of 
m m 

sellers is not plotted versus L IlP.i but is plotted versus L KiIlP.i. The aggregate ,\ curve of buyers 
;=1 i=l 

n n 

is also not plotted versus L IlPbj but is plotted versus L Km+j IlPbj. The two curves are plotted on 
i=l j=l 

the common horizontal axis. This concept will be illustrated along with the result in subsection 4.1.4. 

3.1.3.4 Updating procedure 

As stated in subsection 3.1.3.3, the optimal ,\ will be equal to if.' if the non-binding variable belongs 

to the sellers or '_K
Cbj 

. if the non-binding variable belongs to the buyers. Thus, all the £UK of sellers m+, I 

and all the ~KCb· . of buyers are enumerated and sorted from the lowest value to the highest value. The 
- m+l 

algorithm starts by taking the lowest value as the starting ,\ and uses the next greater value to be the 

new ,\ in each iteration. 

3.1.4 Applying LR to type 3 auctions 

In type 3 auctions, all GENCOs and IPPs submit their bids to the ICA, and DISTCOs submit their 

hourly loads to the ICA. Then the ICA implements the auction so that the total revenue of GENCOs 

and IPPs is minimized. 
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3.1.4.1 General type 3 auction formulation 

The general formulation for type 3 auctions can be modified from that of type 4 auctions, (3.55) to 

(3.60), and is shown as follows: 

subject to 

where 

;=1 
i= 1, ... ,m 

n 

F = - L Km+jAPbj 
j=1 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

which is a constant because in type 3 auctions which are single-sided auctions, APbj is the change in 

load at each load bus. 

3.1.4.2 Formulation of LR-based type 3 auctions 

The coupling constraint, (3.72) and the local constraints, (3.73) and (3.74) can be relaxed and the 

LaGrange function can be written as: 

m m 

L L C.;AP.i + A(F - L K;AP.;) 
;=1 ;=1 

m m 

+ LJ.I.;(AP.; - B.;) - Lv.;AP.; (3.76) 
;=1 ;=1 

The derivative of L with respect to AP.; can be derived and is shown in (3.77). 

oL 
oAP.; = c.; - K;A + J.I.; - v.; (3.77) 

At optimality, &g~ .. is equal to zero. Thus, (3.77) becomes (3.78). 

(3.78) 

Note that (3.77) and (3.78) are the same as (3.63) and (3.65) of LR-based type 4 auctions. 
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3.1.4.3 Algorithm 

The algorithm for LR-based type 3 auctions is the same as that for LR-based type 4 auctions, as 

such, Fig. 3.6 applies to type 3 auctions; D.P. i can be determined from (3.67) and (3.68). Similar to 

type 4 auctions, there will be m - 1 binding variables, i.e. equal to 0 or B. i , and so the value of the 

other variable can be determined from (3.72). 

The optimal .x can be found from the value of .x of the aggregate .x curve of sellers at the value F of 
m 

the horizontal axis. The horizontal axis of the aggregate .x curve of sellers is L Ki D.P.i. This concept 

will be illustrated along with the result in subsection 4.1.3. 

3.1.4.4 Updating procedure 

The concept and procedure are the same as those of LR-based type 4 auctions except that -:":'+i 
of buyers does not exist, so _KCbi 

. is not considered in the updating procedure of LR-based type 3 
~+J 

auctions. 

3.1.5 Implementation problems in applying LR to type 1 and 2 auctions 

Some utilities have already adopted the LR-based auctions, which are equivalent to type 1 auctions 

in this thesis for trading power. There will be many independent power producers (IPP) in the new 

competitive market and therefore identical or similar generating units will be prevalent in the market. 

This prevents us from handling the identical units as they were handled in Virmani et al. [13] and 

Slawaji et al. [18]. Adjusting the heat rates may not be done due to the fairness issue and the solution 

found by committing units as a group may not be the optimal solution for the system. 

The problems studied in this thesis are divided into two categories, problems with identical units 

and problems with similar units. For identical units, LR will always select or deny all the identical units 

simultaneously no matter what the optimal solution is. This means that LR will probably be unable 

to find the optimal solution and sometimes not be able to even find a feasible solution. For similar 

units, sometimes the optimal solution requires selection of only some of these units. Any subsets of 

similar units can be selected for the optimal solution. However, not all units may be selected as this 

would cause overgeneration. This is inequitable to the unchosen units which actually could provide an 

alternative optimal solution. The case-studies showing these problems will be described in subsection 

4.1.5. 

Although the problems stated above also occur in UC, they are more intense when LR is used for 

implementing an auction due to two main reasons. First, auction has been proposed for use in the 
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deregulated environment which will have many identical or similar units and these units are the cause 

of the problems discussed here. Second, auctions are very dynamic and they change every period, so 

the proper algorithm and the LaGrange multiplier updating procedure that can be used for one period 

may be inappropriate for use in other periods. 

3.2 Interior-Point Linear Programming (IPLP) 

3.2.1 Algorithm of IPLP 

Various algorithms have been developed for IPLP. In this thesis the IPLP method used to imple-

ment auctions is the affine-scaling primal algorithm. Also, explanation of IPLP is coupled with the 

affine-scaling primal algorithm. This algorithm is chosen because it is simple and also efficient. The 

explanation of IPLP's algorithm is divided into two parts. The first part gives the basic concept of the 

affine-scaling primal algorithm. The explanation of the basic formulation and the algorithm is based 

on Arbel [35]. The basic formulation is explained in the first part and the basic algorithm is described 

along with the developed algorithm in the second part to be the complete algorithm of IPLP used in 

this thesis. The developed algorithm in the second part comes from the addition of a section to the 

basic algorithm so that IPLP can find an exact solution. 

3.2.1.1 Basic concept 

Unlike the simplex method, IPLP reaches a solution by moving through the interior of feasible region. 

Two major components of the affine-scaling primal algorithm are centering and projective gradient 

direction. Movement is made through projective gradient direction for maximizing the objective function 

or opposite to projective gradient direction for minimizing objective function. The projective gradient 

direction is used instead of gradient direction for the purpose of maintaining feasibility. Centering is 

performed to achieve the potential to improve objective function in each iteration. Centering is made 

through the following procedure. In each iteration, the linear program and the current solution vector 

are scaled so that the components of the scaled solution vector have equal distances from all the edges of 

the scaled feasible region. Then the current scaled solution vector is updated to the new solution vector 

and the new solution vector is rescaled back to the original space. The operation used to perform 

rescaling is affine transformation. This is why this class of IPLP algorithm is called affine-scaling 

algorithm. In addition, the scaling and rescaling processes are built in the algorithm so that all of the 

steps in the algorithm are performed in the original space. 
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3.2.1.1.1 Starting solution The starting solution must lie within the feasible region. It is not 

always be easy to find such a starting solution. Thus, the original problem is augmented to become a 

problem in which any Po, having all components greater than zero can be part of pI to be the starting 

solution of the augmented problem. This thesis uses vector one, [1 1 ... 1], as the starting solution 

vector, pl. The big M method is used to construct the augmented problem. The augmented problem 

has one additional variable. If this additional variable is driven to zero at the end of the algorithm, the 

primal problem is feasible. Otherwise, the primal problem is infeasible. 

The original and augmented problems are shown at (3.79) and (3.80) respectively. Note that M is 

a big positive number and !3 is a m-component vector. 

Original linear program 

subject to 

AP=b 

p>o 

where 

P: variables; n-component column vector 

cT : cost coefficients; n-component row vector 

A: technological coefficients; m x n matrix 

b: right hand side; m-component column vector 

Augmented linear program 

subject to 

where 

minctTp l 

pi 

A/P/=b 

p'> 0 

(3.79) 

(3.80) 

(3.81 ) 
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A' = [A ~l 

~= b- APo 

(3.82) 

(3.83) 

(3.84) 

3.2.1.1.2 Stopping criteria Three quantities, duality gap, primal feasibility, and dual feasibility, 

are used as the stopping criteria for terminating the algorithm. These quantities are defined in (3.85), 

(3.86), and (3.87); y and z are defined in (3.89) and (3.90) respectively. If all three criteria are met 

simultaneously, the algorithm is terminated. In other words, the solution found is very close to the 

optimal solution. This type of solution is called f-optimal solution. Although dual feasibility is desired 

in terminating the algorithm, sometimes it cannot be achieved. In the used algorithm IPLP in this 

thesis, the dual feasibility stopping criterion is neglected and the algorithm still works quite well with 

many test problems. 

. norm(c'TP'-bTy) 
dualzty gap = ( TP') 1 + norm c' 

(3.85) 

. . . norm(b - A'P') 
primal feaszbzlzty = 1 (b) + norm 

(3.86) 

c' - A,Ty - z 
dual feasibility = ( ) 1 + norm c' 

(3.87) 

3.2.1.2 Developed algorithm 

In the basic algorithm, IPLP can find only the (-optimal solution, but not the exact optimal solution, 

because the solution found by IPLP is still inside the feasible region. The closer to the exact solution, 

the smaller the values of the stopping criteria are required, which might cause numerical instability. 

In this thesis, the IPLP is developed to be able to find the exact optimal solution. In other words, 

the IPLP can reach the optimal vertex (extreme point). The main concept can be explained as follows: 

a quantity, z (defined at (3.90)), is calculated at every iteration and z is the estimate of the reduced 

cost coefficient vector. 'When the current solution is very close to the optimal vertex, the components 

of z which belong to the basic variables of the optimal vertex are very close to zero. Using this concept, 

the algorithm can check to see if the duality gap and primal feasibility are satisfied and ensure that 

the number of components of z which are very close to zero is equal to the number of constraints. 

The estimated optimal basic variables are the variables having satisfied values of z. These estimated 

optimal basic variables can be verified with the Karush-Kuhn-Tucker (KKT) conditions for optimality. 
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The KKT conditions can be seen in Bazaraa et al. [45], page 221-227. If the KKT conditions are 

satisfied, the estimated optimal basic variables are correct and the optimal solution can be calculated. 

Apart from the fact that this algorithm can find the exact solution, the great benefit of the algorithm 

developed in this thesis is that sensitivity analysis can be performed after the optimal solution is found. 

The developed algorithm for IPLP, affine-scaling primal algorithm, in this thesis is described as 

follows: 

Step 0: 

Initialize iteration counter, iter = O. 

Initialize 1'1 and 1'2 as 1e-4 and 1e-6 respectively. 

Initialize the starting solution vector, P'(iter)=[l 1 ... l]T. 

Step 1: 

Increment the iteration counter, iter = iter + l. 
Define the scaling matrix D{iter) by 

D{iter) = diag( [P'1(iter) P'2{iter) ... P'n+diter)] ), (3.88) 

where diag(P') means diagonal matrix of vector P' and P'j{iter) is the ith component of the current 

P'(iier). 

Step 2: 

Calculate the dual estimate, y(iter), where y(iier) is a m-component column vector, by solving 

(3.89) 

Step 3: 

Find the estimate of the reduced cost vector, z{iier) and then use it to find the primal step direction 

vector, dP'{iier), where z(iter) and dP'(iter) are n + 1 component column vectors, by 

Step 4: 

Update the solution vector by 

z(iier) = c' - A,T y(iter), 

dP'(iter) = -D2(iter)z(iter). 

P'(iter + 1) = P'(iter) + padP'(iter) , 

(3.90) 

(3.91) 

(3.92) 
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0' = min{ -p'jter ) : 'v'dP'j(iter) < 0, 1 < i < n + I}. dP'j zter) - -
(3.93) 

0' is the maximum allowable step size which maintains feasibility and changing by step size 0' will make 

at least one variable hit the boundary of the feasible region. Thus, a factor p is used to make the new 

solution remain inside the feasible region. The algorithm uses p as 0.95 for the results presented in this 

thesis. 

Step 5: 

Test with two criteria. 

First criterion: duality gap and primal feasibility are less than fl. 

Second criterion: the number of components of z which are less than f2 is equal to the number of 

constraints. 

If both criteria are satisfied, go to step 6. Otherwise, go to step 1. 

Step 6: 

The expected optimal basic variables are the variables having z less than f2. Test with the KKT con-

ditions. If the KKT conditions are satisfied, the optimal basic variables have been found, go to step 7. 

If not, go to step 5 and reduce f1 and f2 to be one-tenth of the value previously used in step 5. 

Step 7: 

Find the optimal solution from 

(3.94) 

where Pa contains values of basic variables. Values of non-basic variables are zero. The value of 

objective function can be calculated from substituting the values of all the decision variables into the 

objective function. 

Step 0 to step 4 of the algorithm is based on Arbel [35], and step 5 to step 7 of the algorithm is 

developed by the author. The developed algorithm also can check for infeasibility, unboundedness, and 

degeneracy of primal problem. The result is infeasible if the selected variables at step 5 contain the 

artificial variable added for the augmented problem. The result is unboundedness if for any iteration, 

all of the components of dP'(iter) found at step 3 are all greater than or equal to zero. The result is 

degenerate if the reduced cost coefficient of any of the non-basic variables while testing with the KKT 

conditions at step 6 is calculated to be zero. 
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At step 6, (1 and (2 are repeatedly reduced to be one-tenth if the KKT conditions are still not 

satisfied. Actually this situation is unlikely because the original values of (1 and (2 (1e-4 and 1e-6 

respectively) are set reasonably. These values are tested with many examples and the test shows that 

these values can be used as criteria for terminating the algorithm's interior point part (step 0 to step 

4) to find the exact solution at step 7. 

3.2.2 Applying IPLP to type 3 auctions 

The IPLP technique is used to implement type 3 and 4 auctions in this thesis. The linear program 

for IPLP-based type 3 auctions is the same as the general form of formulation of LR-based type 3 

auctions, (3.71) to (3.75). The upper-bounds of l:l.P.i, B. i are implemented as normal constraints and 

the lower-bounds are implemented as non-negativity constraints. The formulation can be reshown as 

follows: 

subject to 

where 

m 

min L C.il:l.P.i 
AP ... 

• =1 

m 

LKil:l.P.i = F 
i=l 

l:l.P.i :S B.i , i = 1, ... , m 

n 

F = - LKm+jl:l.Pbj 
j=l 

F is a constant because l:l.Pbj is change in load at each load bus. 

3.2.3 Applying IPLP to type 4 auctions 

(3.95) 

(3.96) 

The linear program for IPLP-based type 4 auctions is the same as the general form of formulation 

of LR-based type 4 auctions, (3.55) to (3.60). To implement IPLP, the upper-bounds of l:l.P. i, B.i 

and the upper-bounds of l:l.Pbj , Bbj are implemented as normal constraints and the lower-bounds are 

implemented as non-negativity constraints. The linear program for type 4 auctions becomes: 

(3.97) 

subject to 
m n 

L Kil:l.P.i + L Km+jl:l.Pbj = 0 
i=l j=l 
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I:l.P.;::; B.;, i= l, ... ,m 

I:l.P.;, 2: 0, Vi, 

3.3 Upper-Bound Linear Programming (UBLP) 

This algorithm is useful for the linear program having variables with upper-bounds (0 ::; P; ::; 

p;nax). In the type 3 and 4 auction problems, the variables have the upper-bounds in this form. This 

is why UBLP is used to implement type 3 and 4 auctions in this thesis. The UBLP algorithm has few 

differences from the simplex algorithm. The major difference in concept is that instead of implementing 

the upper-bounds of variables as the normal constraints of the standard form, the upper-bounds of 

variables are treated as the same type of the non-negativity constraints. In this way the dimension of 

the constraints are greatly reduced which helps to reduce the computing and storage requirements. To 

show how the dimension of the constraints are reduced, the following linear programs, (3.98) and (3.99) 

are shown. 

The linear program with variables having upper-bounds in the standard form is shown in (3.98). 

The UBLP uses (3.98) in implementation in which the dimension of the constraints is the dimension 

of matrix A, assumed as m x n. If problem (3.98) is implemented using the simplex method, (3.98) 

is modified to the standard form problem, (3.99). Dimension of the constraints of problem (3.99) is 

(m + n) x 2n, which is much greater than the dimension of constraints of (3.98), m x n. 

(3.98) 

subject to 

AP=b 

(3.99) 
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subject to 

AP=b 

P+s = pmax 

P > 0 s>O 

where 

P: variables; n-component column vector 

cT : cost coefficients; n-component row vector 

A: technological coefficients; (m x n) matrix 

b: right hand side; m-component column vector 

s: slack variables; m-component column vector 

The algorithm used to build the computer program for UBLP to implement type 3 and 4 auctions 

is based on Luenberger [47]. The algorithm is very similar to that of the simplex method except that 

all of the non-basic variables of the simplex method are zero (lower bound of UBLP problem), but 

the non-basic variables of UBLP can be at the lower bounds, 0, or at the upper bound, Prax . If the 

non-basic variable is at the lower bound, it is Pi in the tableau, and Pi = Pi. If the non-basic variable 

is at the upper bound, it is pt in the tableau, and pt = Piax - Pi. As the iterations progress, the 

non-basic variable is changed back and forth from Pi to Pt. In the program, there is a variable, bndi , 

to indicate that the non-basic variable is at the lower or upper bound. If the non-basic variable is at 

the lower bound, bndi = o. If the non-basic variable is at the upper bound, bndi = 1. The algorithm 

is summarized as follows: 

Step 1: 

Find a starting basic feasible solution. 

Step 2: 

Find the non-basic variable which has the most positive reduced-cost coefficient. ( Assume variable P k 

is selected.) If all the reduced-cost coefficients of non-basic variables are less than or equal to zero, the 

current solution is optimal solution. Stop. 
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Step 3: 

Calculate three numbers, Rl from (3.100) or (3.101), R2 from (3.102), and R3 from (3.103). 

Rl = 0 if bndk = 1 
biter 

R2 = min -'-, VYik > 0 
Yik 

b~ter _ pmax 
R3 = min I k, VYik < 0 

Yik 

where 

(3.100) 

(3.101) 

(3.102) 

(3.103) 

current technological coefficient at ith row and kth column 

current right hand side 

Step 4: 

Choose the minimum number among R 1 , R 2, and R3 and then update the tableau as either of the 

following three cases: 

Rl is chosen: 

R2 is chosen: 

R3 is chosen: 

Go to step 2. 

The variable Pk is changed to its opposite bound. 

Subtract Pk'ax times column k from right hand side, biter. 

Multiply column k (including its reduced cost coefficient) by -1 and reverse bndk. 

The basis does not change. This case does not require pivot. 

The basic variable of the pivoting row returns to its old bound. 

Pivot in the same manner as the simplex method. 

The basic variable of the pivoting row is changed to the opposite of its old bound. 

Subtract Pk'ax from b~ter. 

Reverse the sign of Yrk and reverse bndk. r is the pivot row. 

Note that in the computer program, only the technological coefficients and reduced-cost coefficients 

of non-basic variables are stored in each iteration during the procedure. This helps reduce storage 

requirements while running the program. 
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3.3.1 Applying UBLP to type 3 auctions 

The linear program is the same as (3.95) of subsection 3.2.2 in the IPLP section except that instead 

of implementing the upper-bounds of the bids as the normal constraints, they are implemented in the 

same manner as the non-negativity constraints. The linear program can be shown below: 

subject to 

where 

m L Ki fj.p. i = F 
i=1 

O:S fj.P.i :S B.i, i = 1, ... , m 

n 

F = - L Km+jfj.Pbj 
j=1 

F is a constant because fj.Pbj is change in load at each load bus. 

3.3.2 Applying UBLP to type 4 auctions 

(3.104) 

(3.105) 

Instead of implementing the upper-bounds of the bids as the normal constraints as (3.97) of sub-

section 3.2.3 in the IPLP section, they are implemented as the same manner as the non-negativity 

constraints. The linear program is reshown below: 

(3.106) 

subject to 

m n 

L Ki fj.p. i + L Km+i fj.Pbj = 0 
i=1 j=1 

o :S fj.p. i :S B. i , i = 1, ... , m 
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4 RESULTS AND DISCUSSION 

This chapter presents the results of the illustrative auction examples implemented with LR, IPLP, 

and UBLP. For type 1 and 2 auctions, the network constraints are not considered. For type 3 and 

4 auctions, a six-bus system is used to demonstrate the implementation of network constraints. The 

system data and a figure of the six-bus system are contained in the Appendix. 

4.1 LaGrangian Relaxation (LR) 

For ease of notation, starting A, which is composed of four elements, (from the first to fourth stages), 

will be symbolized as shown in Table 4.1. These starting A will be used in subsections 4.1.1, 4.1.2, and 

4.1.5. 

Table 4.1 Reference notation for A 

Notation A 
Aa [12.5 12.5 12.5 12.5] 
Ab [6 6 6 6] 
Ac [7.79.8 16.3 14.2] 
Ad [9 9 9 9] 
Ae [6 6 12.5 12.5] 
Af [66 12.56] 
Ag [6 12.5 12.5 6] 

For subsections 4.1.1, 4.1.2, and 4.1.5, the auctions in the illustrative examples are performed in 

only four stages, one hour per stage; thus, the minimum up and down time constraints are neglected. 

Note that the data of GENCOs used in this section (4.1) and the load data used in subsections 4.1.1, 

4.1.2,4.1.5, and 4.1.6 are based on the data of a UC example in Wood et al. [34]. 

4.1.1 Applying LR to type 1 auctions 

There are three GENCOs in this example, each with one generating unit. To relate this example to 

the example in subsection 4.1.5, the start-up costs are neglected. The GENCOs' data is shown in 
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Table 4.2 GENCO data for subsection 4.1.1 

GENCO i aig big Cig pmin 
ig 

pmax 
i!l 

GENCO 1 0.0020 10 500 100 600 
GENCO 2 0.0025 8 300 100 400 
GENCO 3 0.0050 6 100 50 200 

Table 4.3 Load data for subsection 4.1.1 

Stage 1 2 3 4 
Load 170 520 1100 330 

Table 4.4 Optimal solution for subsection 4.1.1 

Stage(t) GENCO 1 GENCO 2 GENCO 3 
1 0 0 170 
2 0 320 200 
3 500 400 200 
4 0 130 200 

Table 4.5 Optimal GENCO costs for all stages for subsection 4.1.1 

GENCO i GENCO 1 GENCO 2 GENCO 3 
Cost 6000.00 8398.25 5764.50 

Table 4.2 and the load data for the four stages is shown in Table 4.3. The optimal solution of the 

auction is shown in Table 4.4. The optimal production cost of each GENCO for all stages is shown in 

Table 4.5. The total optimal production cost is $20162.75. 

The solution indicates that GENCO 3 is selected first. GENCOs 1 and 2 are selected only when 

GENCO 3 cannot supply the load and GENCO 1 is selected when GENCO 2 cannot supply the load. 

This is true because GENCO 3 has the least expensive generation and GENCO 1 has the most expensive 

generation. 

4.1.2 Applying LR to type 2 auctions 

There are three GENCOs and three DISTCOs in this example. The three GENCOs are the same as 

the three GENCOs in subsection 4.1.1. The data of the three DISTCOs changes based upon the stages 

and is shown in Table 4.6, 4.7,4.8, and 4.9. The start-up costs are again neglected as in subsection 

4.1.1. 

The optimal solution is shown in Table 4.10. The optimal total cost for each GENCO and the 
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Table 4.6 DISTCO data at t=1 for subsection 4.1.2 

DISTCO i aid bid Cid u:nin • Lmar 
• 

DISTCO 1 -0.0025 8.55 350 50 200 
DISTCO 2 -0.0040 6.50 50 50 150 
DISTCO 3 -0.0055 6.50 50 50 150 

Table 4.7 DISTCO data at t=2 for subsection 4.1.2 

DISTCO i aid bid cid u:nin • u:nar 
• 

DISTCO 1 -0.0015 12.05 450 50 350 
DISTCO 2 -0.0035 10.79 300 50 200 
DISTCO 3 -0.0050 7.00 50 50 150 

Table 4.8 DISTCO data at t=3 for subsection 4.1.2 

DISTCO i aid bid cid u:nin • Lr:nar 
• 

DISTCO 1 -0.0010 14.90 500 200 600 
DISTCO 2 -0.0020 14.00 300 150 350 
DISTCO 3 -0.0025 12.75 100 50 250 

Table 4.9 DISTCO data at t=4 for subsection 4.1.2 

DISTCO i aid bid Cid Lr:nin 
• Lr:nar 

• 
DISTCO 1 -0.0020 10.20 400 50 250 
DISTCO 2 -0.0030 9.13 250 50 150 
DISTCO 3 -0.0050 8.00 50 50 150 

optimal total revenue for each DISTCO for all stages are shown in Table 4.11. The difference between 

the optimal total revenue of DISTCOs and the optimal total production cost of GENCOs is $8042.9. 

The optimal price from EDC for each stage is shown in Table 4.12. From the optimal solution, it can 

be seen that the total system loads that can be supplied in stages 1,2,3, and 4 are 170, 520,1100, and 

200 respectively. If any DISTCOs cannot buy enough power to supply their expected loads, they will 

modify their revenue curve functions prior to submitting them to the ICA next time. Similarly, if any 

GENCOs cannot sell the power they expected, they will also modify their cost functions to submit to 

the ICA next time. 

The concept of finding the optimal price from the intersection of the aggregate GENCO's incremental 

cost curve and the aggregate DISTCO's decremental revenue curve in subsection 3.1.2.1 will be apparent 

from the following. From the optimal solution in the Table 4.10, GENCO 3 and DISTCO 3 are 

committed in stage 1. GENCOs 2, 3 and DISTCOs 1, 2 are committed in stage 2. All GENCOs 
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Table 4.10 Solution found by LR for subsection 4.1.2 

Company t = 1 t=2 t = 3 t=4 
GENCO 1 - - 500 -
GENCO 2 - 320 400 -
GENCO 3 170 200 200 200 
DlSTCO 1 170 350 600 150 
DlSTCO 2 - 170 350 50 
DlSTCO 3 - - 150 -

Table 4.11 Optimal GENCO costs and DlSTCO revenues for aU stages for 
subsection 4.1.2 

GENCO 1 GENCO 2 GENCO 3 DISTCO 1 DlSTCO 2 DISTCO 3 
Cost or 6000.00 7016.00 5764.50 17180.00 7687.15 1956.25 
Revenue 

Table 4.12 Price from EDC of each stage for subsection 4.1.2 

Stage 1 2 3 4 
Price from EDC 7.70 9.60 12.00 9.60 

and DlSTCOs are committed in stage 3. GENCO 3 and DISTCO 1, 2 are committed in stage 4. 

Fig 4.1, 4.2,4.3, and 4.4 show the intersections of the aggregate committed GENCO incremental cost 

curves and the aggregate committed DISTCO decremental revenue curves in stages 1, 2, 3, and 4 

respectively. The intersections taken from the curves give the same optimal prices as those shown in 

Table 4.12. 

4.1.3 Applying LR to type 3 auctions 

In subsection 4.1.3 and 4.1.4, the prices of the bids are in $/ MW H. The amounts of the bids and 

the loads are shown in MW, but actually they are implemented in p.u. of 100 MVA base. GENCOs 

1, 2, and 3 are at buses 1,2, and 3 respectively. The bids submitted by all the GENCOs are shown in 

Table 4.13 and the changes of loads at buses 4, 5, and 6 are shown in Table 4.14. From the load change 

data and the network data in the Appendix, F, which is defined in (3.75) is calculated and equal to 

0.456 p.u. The optimal result is shown in Table 4.15. Optimal change of the total real power loss is 

calculated and is equal to 1.37 MW. The optimal revenue of sellers is $470.25. The concept of finding 

the optimal>' from the value of >. of the aggregate>. curve of sellers at the value F of the horizontal 

axis in subsection 3.1.4.3 is shown in Fig. 4.5. The optimal>' is 12.452. 
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Table 4.13 Bid data for subsection 4.1.3 

Bid GENCO 1 GENCO 2 GENCO 3 
i i = 1 i=2 i=3 

Price, C.i 9.70 8.80 7.00 
Amount, B.i 20.00 25.00 20.00 

Table 4.14 Load change data for subsection 4.1.3 

Bus 4 5 6 
J j=1 j=2 j=3 

Load change, !},Pbj 25.00 10.00 20.00 

Table 4.15 Accepted bids for subsection 4.1.3 

Bid GENCO 1 GENCO 2 GENCO 3 
Price, c.i 9.70 8.80 7.00 

Amount, !},P'i 11.37 25.00 20.00 

15.------.----~r_----_.------r_~r_--~--~ 

14 

13 

12.452 

12 
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80~----~----~~----~------L-~--------~ 
0.1 0.2 Horizo0ri~1 axis 0.4 0.456 0.6 

Figure 4.5 Optimal A from the value of A of the aggregate A curve of sellers at 
the value F of the horizontal axis 
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From the result in Table 4.15, we can see that GENCOs 2 and 3 can sell all power offered but 

GENCO 1 can sell only 11.37 MW from the offered amount of 20 MW. The result is not only because 

GENCO 1 offers the highest bids and the total change of demand of the market, 55 l\IW, is less than the 

total change of supply of the market, 65 MW, it also depends on the network constraints. Sometimes 

even the GENCO which bids the lowest will have the contract limited to the network constraints. 

GENCO 1 might have to reduce its asking price in the next time period. 

4.1.4 Applying LR to type 4 auctions 

GENCOs 1,2, and 3 are at buses 1,2, and 3 respectively and DISTCO 1,2, and 3 are at buses 4, 

5, and 6 respectively. The bids submitted by all the GENCOs and DISTCOs are shown in Table 4.16. 

The optimal result is shown in Table 4.17. The change of the total real power loss is calculated and 

is equal to 0.52 MW. The optimal surplus is $135.06. The concept of finding the optimal ..\ from the 

intersection of the aggregate ..\ curve of sellers and the aggregate ..\ curve of buyers in subsection 3.1.4.4 

is shown in Fig. 4.6. The optimal..\ is 11.287. 

Table 4.16 Bid data for subsection 4.1.4 

Bids GENCO 1 GENCO 2 GENCO 3 DISTCO 1 DISTCO 2 DISTCO 3 
i,j i = 1 i=2 i = 3 j=1 j=2 j=3 

Price, C.i, Cbj 9.70 8.80 7.00 12.00 10.50 9.50 
Amount,B.i, Bbj 20.00 25.00 20.00 25.00 10.00 20.00 

Table 4.17 Accepted bids for subsection 4.1.4 

Bids GENCO 1 GENCO 2 GENCO 3 DISTCO 1 DISTCO 2 DISTCO 3 
i, j i = 1 i=2 i = 3 j = 1 j=2 j=3 

Price, c.;, Cbj 9.70 8.80 7.00 12.00 10.50 9.50 
Amount IlP.i, IlPbj 0.00 25.00 20.00 25.00 10.00 9.48 

From the result in Table 4.17, we can see that GENCOs 2 and 3 can sell all power offered for sale 

and DISTCOs 1 and 2 can buy all power they bid on. DISTCO 3 can buy only part of the desired 

power and GENCO l's bid is not accepted. The reason is not only because GENCO 1 offers the highest 

bid and DISTCO 3 offers the lowest bid, it also depends on the network constraints. Sometimes even 

the GENCO which bids the lowest or the DISTCO which offers the highest bid will have their contracts 

limited due to the network constraints. 



www.manaraa.com

48 

15r-------r-------r-----~r_--_r--------_,,,----_. 

14 

13 

12 

..< 
11.287 

11 

10 

9 

------------, 

, 

-- Sellers 

---- Buyers 

-----, 

l ___ _ 

80~------0~.1-------0~2----Ho-r-izO~%~~-I-ax-i~-.3~6~7----~--~0.~5------~0.6 

Figure 4.6 Optimal'>' from the intersection of the aggregate.>. curve of sellers 
and the aggregate.>. curve of buyers 

4.1.5 Implementation problems in applying LR to type 1 and 2 auctions 

The auctions used to demonstrate the problems here are type 1 auctions. The system under inves-

tigation in this subsection is composed of four GENCOs (modified from Wood et. al. [34]) and these 

GENCOs are committed for four stages. Each GENCO has one generating unit. 

The implementation problems can be separated into two main categories: Problems arising from 

identical units and problems arising from similar units. 

4.1.5.1 Problems with identical units 

There are two main problems when identical units exist. The first is that LR may find only subopti-

mal solutions. The second is that LR may be unable to find any feasible solutions. For this subsection 

start-up cost is not considered because it does not affect the solution found by LR. 

4.1.5.1.1 Finding only sub-optimal solutions The generating unit data for this subsection is 

described in Table 4.18. Units 1, 2, and 3 here are the same as Units 1,2, and 3 in subsection 4.1.1. 

Unit one is identical to unit four. Unit three is the least expensive unit, and units one and four are the 

most expensive units. System loads are shown in Table 4.19. 

The solution found by LR is shown in Table 4.20. The solution found by LR is not the optimal 

solution. It is different from the optimal solution at the third stage, in which either unit 1 or 4 is 
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selected to generate at 500 MW. This is evident from the total cost of the optimal solution, $20162.75, 

which is less expensive than that of the solution which LR found, $20412.75. The difference is more 

pronounced when the start-up costs are taken into account. 

The problem occurs because LR uses DP to find the optimal states for subproblems, and for DP, 

identical or very similar units must have the same optimal states for the subproblems. This is why LR 

cannot find the optimal solution which selects either unit 1 or 4 at the third stage. This problem means 

that the solution found by LR may not be the least expensive nor the best for the whole system when 

identical or very similar units exist. 

Table 4.18 Generating unit data for subsection 4.1.5.1.1 

GENCO i aig big Cig pmin 
ig 

pmax 
ig 

GENCO 1 0.002 10 500 100 600 
GENCO 2 0.0025 8 300 100 400 
GENCO 3 0.005 6 100 50 200 
GENCO 4 0.002 10 500 100 600 

Table 4.19 Load data for subsection 4.1.5.1.1 

Stage 1 2 3 4 
Load 170 520 1100 330 

Table 4.20 Solution LR found for subsection 4.1.5.1.1 

Stage(t) GENCO 1 GENCO 2 GENCO 3 GENCO 4 
1 0 0 170 0 
2 0 320 200 0 
3 250 400 200 250 
4 0 130 200 0 

4.1.5.1.2 Not finding any feasible solutions For this subsection units 1 and 4 are still the 

identical units. The system load at the third stage is changed to be between the summation of pmin .g 

of units 1,2,3, and that of units 1, 2, 3, 4. In addition, p;,;ax of units 2 and 3 are reduced so that the 

load at the third stage cannot be met by only selecting units 2 and 3. The purpose of changing data in 

this way is to force only either unit 1 or 4 to be selected at the third stage. The loads at other stages 

are reduced to accommodate the decreased total maximum capacity. The generating unit data is the 

same as in Table 4.18, except that pt;ax of units 2 and 3 are changed to 150, and 80 respectively. The 



www.manaraa.com

50 

load data is shown in Table 4.21. 

Three starting A (As, Ab, and Ae) have been used for running LR. After running 100 iterations for 

each starting A, LR could not find any feasible solutions. The reason can be explained as follows. To 

cover the load at the third stage at the lowest cost, unit 2 and 3 must be selected. For unit 1 and 4, 

there are only two possible combinations of states; both units are either selected or not selected. The 

case in which both units are not selected cannot occur because the summation of pt;ar of units 2 and 

3 are less than 340. The case in which both units are selected cannot occur because the summation 

of pt;in of units 1, 2, 3 and 4 are larger than 340. When considering only the fourth stage, LR can 

find the solution which is not optimal and this is the case explained in subsection 4.1.5.1.1. The curves 

showing updated primal and dual objective functions of starting Ab are shown in Fig. 4.7. Note that a 

big value of primal objective function is used for the stage having not enough committed generation. 

The example studied in this subsection points out another disadvantage of using LR for auctions 

when identical and very similar units exist. Not only is the solution found by LR probably not the real 

optimal, but it is also sometimes difficult for LR to even find a feasible solution. 

Table 4.21 Load data for subsection 4.1.5.1.2 
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Figure 4.7 Updated primal and dual objective functions of subsection 4.1.5.1.2 
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The concluding remark of subsections 4.1.5.1.1 and 4.1.5.1.2 can be made with the economic inter-

pretation of the LR iterations which will be described as follows: If an energy market is considered, 

the LR algorithm proposes a sequence of hourly prices (..\) to buy energy from GENCOS. GENCOS, 

each one independently, plan their output power in response to the price sequence, meeting their re-

spective constraints. This results in a surplus of power in some hours and deficit of power in some 

other hours. The sequence of prices is then modified by the LR algorithm with the objective to balance 

demand. A reasonable procedure is to modify prices proportionally to their corresponding mismatches 

(subgradient). This procedure is repeated until convergence in prices is attained. These prices are in 

turn implemented. A reserve market working in a similar fashion as the energy market can also be 

implemented. 

From the above description it directly follows that identical units will be jointly selected or not 

selected. However, it is not possible that some of them will be selected while the rest are not. This 

produces two problematic behaviors: First, it is possible to miss the minimizer, should it require that 

some of the identical units be selected and not the rest (subsection 4.1.3.1.1). Second, it is possible 

not to find any feasible solutions. This happens if the selection of all identical units in a given hour 

produces infeasibility in demand because the total minimum output power is larger than the demand; 

and the not selection of all the identical units in a given hour makes it impossible to supply the demand 

(subsection 4.1.3.1.2). 

The rules to solve the problems with identical units may be constructed to make identical units not 

identical while preserving fairness; for instance, they can be penalized in a rotating and cycling fashion. 

However, the rules that can preserve fairness for every unit are very difficult to construct. 

4.1.5.2 Problems with similar units having multiple optimal solutions 

The data studied in this subsection is described in Table 4.22 and Table 4.23. Unit 1 is similar to 

unit 4. The start-up cost is added for units 1 and 4 which are peak units. 

Table 4.22 Generating unit data for subsection 4.1.5.2 

GENCO i aig big Cig pm in 
ia 

pmar 
ig stUPig 

GENCO 1 0.0020 10.00 500 100 600 3300.7 
GENCO 2 0.0025 8.00 300 100 400 0 
GENCO 3 0.0050 6.00 100 50 200 0 
GENCO 4 0.0020 9.88 542 100 600 3324.7 
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Table 4.23 Load data for subsection 4.1.5.2 

Stage 1 2 3 4 
Load 170 520 1100 1000 

Two approaches, using different starting ,\ and changing the order of the unit data as it is fed to 

the program (alternating between the two peak units, units 1 and 4), are tested with this subsection. 

LR is run for two unit data input orders, unit order 1 2 3 4 and 423 1, and for each unit data input 

order, five starting '\('\a, '\b, '\c, '\d, and '\e) are used to run LR. LR is run for 100 iterations for each 

case. In 100 iterations LR may find the optimal solution more than once. The reason that LR is run 

for fixed number of iterations, 100, instead of running until the duality gap is satisfied, is to find out 

whether some different optimal solutions are found in the large number of iterations or not. 

The result can be explained by the following. The unit data input order does not affect solution, 

i.e., unit order 1 234 and 4 2 3 1 give the exactly same solution. The optimal solutions found by LR in 

all different starting ,\ are the same. For some starting ,\ when LR found optimal solutions more than 

once, they are still the same. In conclusion, LR found only one optimal solution as shown in Table 4.24. 

Actually there are two optimal solutions for this subsection. One is what LR found (shown in 

Table 4.24). The other is shown in Table 4.25. '\C ,which corresponds to the optimal ,\ of the solution 

in Table 4.24, is used to test the hypothesis that if it is used as a starting '\, LR will find the other 

optimal solution in Table 4.25. This does not happen. 

Various starting ,\ and two different unit data input orders have been used to obtain the results, yet 

only one optimal solution is found by LR. The optimal solution found is one, in which LR selects unit 

4 at the third and fourth stages, but actually unit 1 could have been selected and would have provided 

the same total cost, $30801.2. Thus, this is unfair to unit 1. 

In our deregulated competitive environment, similar generating units will be prevalent. Therefore 

using LR as an auction method may be inequitable to some generating units. These units might not be 

selected by LR, even though these units can provide the same total cost as the units that LR selected. 

Table 4.24 Optimal solution LR found for subsection 4.1.5.2 

Stage(t} GENCO 1 GENCO 2 GENCO 3 GENCO 4 
1 0 0 170 0 
2 0 320 200 0 
3 0 400 200 500 
4 0 400 200 400 
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Table 4.25 The alternative optimal solution for subsection 4.1.5.2 

Stage(t) GENCO 1 GENCO 2 GENCO 3 GENCO 4 
1 0 0 170 0 
2 0 320 200 0 
3 500 400 200 0 
4 400 400 200 0 

4.1.6 Sensitivity analysis 

In subsection 4.1.5.1.1 we saw that LR was unable to find the optimal solution when identical units 

exist. This section uses the generating unit data and load data of subsection 4.1.5.1.1 to do sensitivity 

analysis for each of these three parameters, Cig, big, and stuPig of unit 1 and 4. The only additional 

data is $3000 of start-up cost for both of units 1 and 4. The procedure varies each of C4, b4 , and 

stUP4 individually in the amount of -10% to 10% of the original value, in increments of 1 %, the results 

are shown in Fig. 4.8, 4.9, and 4.10. The sensitivity analysis results are coupled with the subgradient 

updating procedure. 

Fig. 4.8 represents the curves obtained by varying C4. The curves obtained by varying b4 are the 

same as those of varying stuP4 and they are shown commonly in Fig. 4.9. The curves of Fig. 4.8 and 4.9 

are plotted between normalized cost and percentage of difference of parameters of units 4 and 1. The 

normalized cost is found by comparing the cost of LR's solution to the optimal cost. Actually three 

curves are shown in each figure according to each starting A, but in Fig. 4.8 Ab and Ag give the same 

curve and in Fig. 4.9 all Ab, Ar, and Ag give the same curve. The optimal solution for 0% difference 

of each parameter is what is shown in Table 4.20 in which both units 1 and 4 are selected at the third 

stage. For the optimal solution of other percentage, unit 4 (not unit 1) shall be selected at the third 

stage for -10% to -1% difference because unit 4 is less expensive than unit 1 in this range, and unit 1 

(not unit 4) shall be selected for 1% to 10% difference because unit 1 is less expensive in this range. 

The curves of Ab and Ag, in Fig. 4.8 show that the optimal solution can be found only if there is a 

difference in the parameters. If two or more units have similar values, then it is hard for the algorithm to 

select between the two. Fig. 4.9 demonstrates the same problem. It is especially important to examine 

the curve of Ar in Fig. 4.8 since a 4 % change is needed to distinguish between the units for a negative 

change. Note that the change is not symmetric with respect to the origin. Fig. 4.8 can be understood if 

the updating procedure is examined. It can be traced to discover that the optimal value of A cannot be 

reached by the update algorithm from a value of Ar. The problem exists primarily at the peak demand 

condition, A3. At this level of operation the optimal solution cannot be found. It might be interesting 
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to ask what the range of optimal ,\3 is. Due to small system size, this question can be solved manually. 

The optimal ,\3 for each changed C4 for which unit 1 is less expensive than unit 4 (positive difference 

percentage) is shown in (4.1) and the optimal,\3 for each changed C4 for which unit 4 is less expensive 

than unit 1 (negative difference percentage) is shown in (4.2). 

( 4.1) 

17.0333 - c16~OC4 < ,\3 < 17.0333 (4.2) 

From (4.1) and (4.2) the gap of optimal ,\3 is only Ic~~~tI, which is very small. For example, if 

C4 - Cl is 1%,17.0333 < ,\3 < 17.0417, and the gap is only 0.0084. 

From the derived result it can be explained that the optimal range of ,\3 is very small when the 

percentage of difference of C4 is small. And if vector ,\ is not updated properly with the system data and 

starting '\, LR cannot converge to the optimal solution. This is why starting ,\ can affect the solution. 

Although if jc4 - ell i= 0, (4.1) and (4.2) show that the optimal range of ,\3 exists. Practically it's 

difficult for LR to update ,\3 such that ,\3 is in this optimal range, especially when the range is small. 

This problem can probably be solved by using larger a and f3 in updating ,\ when pdiP is negative but 

this will make LR converge more slowly. 
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Fig. 4.10 illustrates the number of iterations needed to find the optimal solution versus percent 

difference of each parameter for starting Ab. Three curves are shown according to each parameter. The 

curves for other starting A are similar to Fig. 4.10 but they used more iterations than each curve in 

Fig. 4.10 due to effect of starting A. The number of iterations is 100 at 0% difference and this means 

that LR cannot find the optimal solution. From Fig. 4.10, it can be seen that varying C4 requires more 

iterations than varying b4 or stuP4 and varying stuP4 requires a little bit more iterations than varying 

b4 . In addition, from Fig. 4.8 and Fig. 4.9 we see there is only one case of varying C4 where LR cannot 

find the optimal solution. Because of this, it can be implied that for the same percent difference of 

each parameter between units 4 and 1, the order from the most difficult to the least difficult for LR 

convergence is varying C4, stuP4, and b4 respectively. This can be explained based on the result that 

either unit 1 or unit 4 is selected once at 500 MW at the third stage. Suppose the percent difference is 

p, then the difference between the cost of units 4 and 1 is 5 * p for varying C4, 30 * p for varying stuP4, 

and .1 * 500 * p = 50 * p for varying b4 . Varying b4 produces the greatest difference in cost, while varying 

C4 produces the smallest difference in cost. Increasing the differences in cost increase the ease with 

which LR can find the optimal solution. That is why for the same percentage of difference, varying C4 

produces the most difficulty for LR convergence and varying b4 produces the least difficulty. 

From the sensitivity analysis, it can be seen that when identical or similar units exist in the system, 

LR has difficulty in converging to the optimal solution. It is evident from (4.1) and (4.2) that the range 

of optimal A is small, especially when I(C4 - cdl is small. The system studied here is very small. For 

real systems which are much bigger and more complex, the range of optimal A is an interesting future 

research topic. If the range of optimal A is smaller, LR will have more difficulty in converging to the 

optimal solution. Also, real systems are so big that the optimal A range as derived in (4.1) and (4.2) 

cannot be derived to adjust 0' and f3 to update A to be proper with the system. Moreover, The auction 

has a dynamic feature which changes every period and 0' and f3 which are valid with the auction in one 

period may be invalid with other periods. 

4.2 Interior-Point Linear Programming (IPLP) 

The two examples illustrated in this section that applies IPLP to type 3 and 4 auctions, are the 

same as those in subsections 4.1.3 and 4.1.4 of LR. The results of this section are also the same as those 

in subsections 4.1.3 and 4.1.4 of LR except the number of iterations for getting the optimal solutions. 

This issue is discussed in section 4.4. Note that the optimal values of the dual variables of the coupling 

constraints are the same as the values of the optimal A in subsections 4.1.3 and 4.1.4, 12.452 and 11.287 
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respectively. 

4.3 Upper-Bound Linear Programming (UBLP) 

The two examples illustrated in this section that applies UBLP to type 3 and 4 auctions, are the 

same as those in subsections 4.1.3 and 4.1.4 of LR. The results of this section are also the same as those 

in subsections 4.1.3 and 4.1.4 of LR except the number of iterations for getting the optimal solutions. 

This issue is discussed in section 4.4. Note that the optimal values of the dual variables of the coupling 

constraints are the same as the values of the optimal>' in subsections 4.1.3 and 4.1.4,12.452 and 11.287 

respectively. 

4.4 Comparison among LR, IPLP and UBLP 

The same two illustrative examples of type 3 and 4 auctions are implemented using LR, IPLP and 

UBLP. These three methods give the same results. The number of iterations for getting the optimal 

solutions varies with the method used. The number of iterations are compared in Table 4.10. 

Table 4.26 Comparison of number of iterations for getting the 
optimal solutions of the two illustrative examples 

Method Type 3 Auctions Type 4 Auctions 
LR 3 3 

IPLP 9 10 
UBLP 3 5 

From Table 4.26, we can see that the UBLP method uses fewer iterations than the IPLP method. 

This is typical of the simplex method which uses fewer iterations than the interior-point method for 

the small dimension problems. Additionally, the algorithm of the simplex method used in this thesis is 

the upper-bound method. This further reduces number of iterations because implementation by UBLP 

helps reduce the number of constraints which in turn helps reduce the computational and the storage 

requirements. These reasons are why the UBLP uses fewer iterations in the illustrated examples. For 

the larger dimensional auction problems, comparison of the number of iterations of both methods would 

be an interesting research topic. 

Of the methods compared, LR uses the fewest iterations to find the optimal solution. This is due to 

the configuration of type 3 and 4 auction problems which facilitates updating as explained in subsection 

3.1.3.4. For the larger dimensional auction problems, such as when there are additional constraints or 
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when there are more sellers and buyers, comparing of the number of iterations of these three methods 

would be an interesting research topic. 
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5 CONCLUSIONS 

In the U.S. electric power has been supplied by vertically integrated monopolistic utilities for a 

long time. Presently the electric power industry in the U.S. is restructuring to be more competitive. 

The cost-based approach to developing electricity rates will be changed to a price-based approach and 

auctions are considered to be a promising pricing mechanism for the competitive market. There have 

been various types of auctions proposed for use in the electric power market. This thesis focuses on 

four types of auctions. 

The purpose of this thesis is to show how to implement auctions using LR, IPLP, and UBLP and 

to describe the problems associated with using LR to implement type 1 and 2 auctions. 

LR is used to implement type 1, 2, 3, and 4 auctions. For type 1 and 2 auctions, the formulation, 

the algorithm, and the computer program for implementing a type 2 auction are very similar to those 

of type 1 auctions. Therefore, the algorithm and the computer program of type 1 auctions can be used 

with type 2 auctions with only slight modification. The concepts of quadratic and concave revenue 

functions and finding the optimal price via the intersection of aggregate GENCOs' incremental cost 

curve and DISTCOs' decremental revenue curves are discussed for type 2 auctions. For type 3 and 4 

auctions, because the configuration for type 4 auctions is not very complex, instead of continuously 

switching between solving the primal and dual problems, the procedure of using LR to implement the 

auctions is reduced to a simple algorithm; and this makes the updating procedure simple also. 

Different types of auctions are implemented well and efficiently with different methods. This thesis 

implements four types of auctions with various methods and this gives a good understanding of choosing 

the suitable method to implement each of the four types of auctions. This also gives insight on which 

of these methods to apply with other types of auctions. 

The problems of using LR to implement type 1 and 2 auctions are described with illustrative ex-

amples. The illustrative examples are tested on type 1 auctions. The problems studied in this thesis 

are divided into two categories, problems with identical units and problems with similar units. For 

identical units, LR will always select or deny all the identical units simultaneously no matter what 
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the optimal solution is. This means that LR will probably be unable to find the optimal solution and 

sometimes will not even be able to find a feasible solution. For similar units, sometimes the optimal 

solution requires selection of only some of these units. Any subsets of similar units can be selected for 

the optimal solution. However, not all units may be selected as this would cause overgeneration. This 

is inequitable to the unchosen units which actually could provide an alternative optimal solution. The 

problems shown give a good indication for the auctioneer to modify the current method or to find a 

new method to implement type 1 and 2 auctions. The optimal solution should always be found and the 

optimal solution found should be fair to every GENCO. 

IPLP and UBLP are used to implement type 3 and 4 auctions. IPLP is efficient for large-scale linear 

programs except that IPLP cannot find the exact optimal extreme point. Sensitivity analysis cannot be 

performed in IPLP since it is at an interior-point without being computationally expensive. This thesis 

develops an algorithm such that IPLP can find the exact optimal extreme point and then sensitivity 

analysis can be performed with inexpensive computational requirements. This can save significant 

computational cost in implementing large-scale linear programs, including auctions. 

The algorithm developed checks to see if the duality gap and primal feasibility are satisfied and 

ensures that the number of components of the estimate of reduced cost coefficient vector, Z (defined in 

3.90) which are very close to zero is equal to the number of constraints. If these conditions are satisfied, 

the estimated optimal basic variables are the variables having satisfied values of z, i.e. Zi which are 

very close to zero. Those estimated optimal basic variables can be verified with the KKT conditions 

for optimality. 

Finally, the results of the same two illustrative examples of type 3 and 4 auctions tested on LR, 

IPLP and UBLP are compared. The results show that all the three methods yield the same results 

but require different number of iterations. Of the methods compared, LR requires the fewest iterations 

because of the configuration of type 3 and 4 problems which makes the updating procedure simple. 

IPLP requires the largest iterations. 
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APPENDIX SIX BUS SYSTEM 

The six-bus system used for the examples in subsections 4.1.3 and 4.1.4, sections 4.2 and 4.3 of 

Chapter 4 is based on Wood et. al. [34]. The six-bus network is shown in Fig. A.1. The line data is 

shown in Table A.1. The original voltage, the real and reactive powers of generator and the load at 

each bus is shown in Table A.2. Some data is shown in per unit with 100 base MVA and 230 base kV. 

Table A.1 Line data of six-bus network 

From To Line Line Half of 
Bus Bus Resistance Reactance Line Charging 

(pu) (pu) (pu) 
1 2 0.100 0.200 0.020 
1 4 0.050 0.200 0.020 
1 5 0.080 0.300 0.030 
2 3 0.050 0.250 0.030 
2 4 0.050 0.100 0.010 
2 5 0.100 0.300 0.020 
2 6 0.070 0.200 0.025 
3 5 0.120 0.260 0.025 
3 6 0.020 0.100 0.010 
4 5 0.200 0.400 0.040 
5 6 0.100 0.300 0.030 

Table A.2 Bus data of six-bus network 

Bus No. Voltage Voltage Generation Generation Load Load 
Magnitude Angle Real Reactive Real Reactive 

(V) (degree) Power (MW) Power (MW) Power (MW) Power (MW) 
1 1.0500 0.00 112.62 34.79 - -
2 1.0500 -2.53 140.00 75.07 - -
3 1.0700 -5.15 60.00 112.34 - -
4 0.9754 -4.68 - - 100.00 70.00 
5 0.9677 -6.58 - - 100.00 70.00 
6 0.9930 -7.27 - - 100.00 70.00 
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Figure A.I Six-bus network 
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